Ch. 13 Notes: MIXTURES AND SOLUTIONS

NOTE: Vocabulary terms are in **boldface and underlined**. Supporting details are in *italics*.

I. Types of mixtures

(<u>mixture</u> – *a physical blend of substances*)

- A. <u>heterogeneous mixture</u>– physical mix with separate phases (parts)
 - 1) suspension
 - a) heterogeneous mixture that will settle if left alone
 - b) largest particle sizes of all mixtures
 - c) can be easily filtered
 - 2) *thixotropic mixture*
 - a) heterogeneous mixture that settles into a bottom soil phase and top liquid phase
 - b) when stirred, it flows like liquid
 - c) when left alone, it sits like a solid
 - 3) <u>colloid</u> (also called <u>colloidal suspension</u>)
 - a) heterogeneous mixtures with two phases of intermediate particle sizes
 - b) cannot be filtered or settled
 - c) colloids show **<u>Brownian motion</u>** (random movements)
 - d) electrostatic layers form
 - e) examples: liquid and solid aerosol, emulsion, solid emulsion, sol, solid sol, paste, gel, foam, solid foam
 - f) <u>**Tyndall effect**</u>—visible light transmitted by scattering through a colloid or suspension
 - 1) light will <u>not</u> show a path thorough a solution
 - 2) light will show a path through a colloid and a suspension
 - g) <u>emulsions</u>
 - i) colloidal dispersions of liquid in liquid
 - ii) require an "emulsifier" like soap
- B. <u>homogeneous mixture</u> (solution)—"soln"– *physical mix with one phase (part)* (more later in this chapter)
 - 1) aqueous solutions (aq)—water containing dissolved materials
 - 2) true solutions will not precipitate (form solids) or separate into layers
 - 3) parts of a solution
 - a) <u>solute</u>—the substance being dissolved
 - a) **<u>solvent</u>**—the substance doing the dissolving
 - 4) common solution (solute-solvent) combinations
 - a) gas—gas
 - b) gas-liquid
 - c) liquid—liquid
 - d) solid—liquid
 - e) solid—solid
 - 5) <u>soluble</u>—*dissolvable*
 - <u>**insoluble**</u> = not dissolvable
 - 6) <u>miscible</u>—liquids that are soluble in each other <u>immiscible</u>—liquids that are not soluble in each other
 - 7) concentration
 - a) <u>dilute</u>—more solvent than solute (weak)
 - b) <u>concentrated</u>—more solute than solvent (strong)

PARTICLE SIZE:	<i>solution</i> < salt water;	<i>colloid (colloidal suspension)</i> whipped cream;	<	<i>suspension</i> dirt in water;
	acids; "air"	mayo; milk		wax in water

II. Water Molecule Characteristics

- A) colorless and odorless
- B) neutral pH of 7
- C) *triatomic* (three atoms)
- D) *angular* shape with two unshared electron pairs
- E) polar (δ + and δ areas)
- F) <u>hydrogen bonds</u>—an attraction between hydrogen and an unshared pair of an electronegative element on a neighboring molecule
- G) surface tension—attraction between molecules on the surface of a liquid
 - 1) surface tension makes water bead
 - 2) **surfactants** "*wetting agents*" *which decrease surface tension* by breaking hydrogen bonds (soaps)
- H) <u>capillarity</u> (capillary action)—moving upward, against gravity (up through roots, etc.)
- I) hexagonal crystals
- J) *high specific heat*: $4.184 \text{ J/g}^{\circ}\text{C}$ (q = mc Δ T... more later)
- K) high boiling point: 100 °C

III. Solution Concentration

- A) <u>concentration</u> [] amount of solute / amount of solvent
- B) $\underline{molarity}(M)$
 - 1) moles of solute / liters of soln. $\mathbf{M} = \mathbf{mol} / \mathbf{L}$
 - 2) M is read as "molar"
 - 3) examples

EXAMPLE 1) What is the molarity of a solution of 0.6784 mol NaCl in 4.5 L water?

 $\begin{array}{ccc} M = & \underline{\text{moles}} \\ L & \end{array} & \begin{array}{ccc} \underline{0.6784 \text{ mol NaCl}} & = & 0.15 \text{ mol} \\ 4.5 \text{ L} \text{ soln.} & \end{array} \\ \end{array} = \begin{array}{ccc} \underline{0.15 \text{ M}} \\ L \end{array}$

M	What is the molarity	y of the solution?	0.02	(5124077
$M = \frac{moles}{L}$	12.3 -g €₁₂H₂₂O µ-X	$\frac{1 \text{ mol} C_{12}H_{22}O}{342.34 \text{ g} C_{12}H_{22}O}$	<u>11</u> = 0.03 H	$\frac{65134077}{\text{(keep in calculator)}}$
500.00 mL x1	$\frac{1 \text{ L}}{000 \text{ mL}} = 0.50000$	L	<u>0.03651340</u> 0.50000 L	$77\mathrm{mol} = 0.0730\mathrm{M}$
EXAMPLE 3)	How many grams of solution?	of KBr should be ad	ded to 977.6 1	nL of water to make a 3.0 M
977.6 mL x <u>1</u> 100	\underline{L} = 0.9776 L 0 mL			
3.0 <u>mol KBr</u> x L	0.9776 L x <u>119.00</u> 1 mo	ho g KBr = 350 g F	KBr	
с)	(Chem 1H) – <u>Molal</u>	ity (m) (script lo	wer-case m)	
	1) molality (m) = moles of sol kg of solve	<u>ute</u> nt	
	 <i>m</i> is read examples 	as "molal"		
EXAMPLE 4)	If a student adds 65 the solution?	5.00 g of sucrose to	800.0 mL of v	water, what is the molality of
Mass of solute =	= 65.00 g C ₁₂ H ₂₂ O ₁₁	Volume solv	vent = 800.0 m	$mL H_2O \qquad m = ?$
m = moles solut	e / kg solvent			
65.00 g C₁₂H₂₂C	$D_{1+} \ge \frac{1 \mod C_{12}H_{22}}{342.30 \frac{g}{g}C_{12}H_{22}}$	$\frac{D_{11}}{2\Theta_{11}} = 0.1899 \text{ mol} = 0.18999 \text{ mol} = 0.189999 $	$C_{12}H_{22}O_{11}$	
Knowing that 1	$mL H_2O = 1 g H_2O.$			
Solvent: 800.0 £	g H₂O x <u>1 kg H₂O</u> 1000 g H ₂O	$= 0.8000 \text{ kg H}_2\text{O}$		
molality $(m) =$	$\frac{\text{moles of solute}}{\text{kg of solvent}} = \frac{1}{2}$	<u>0.1899 mol C₁₂H₂₂C</u> 0.8000 kg H ₂ O	$\underline{O}_{11} = 0.2374$	h m
EXAMPLE 5)	How many grams of 1.50 <i>m</i> solution?	of table salt should b	be added to 50	00. mL of water to make a
Volume solvent	$= 500.0 \text{ mL H}_2\text{O}$	m = 1.	50 m	Mass of solute = ? g NaC
Knowing that 1	$mL H_2O = 1 g H_2O.$			
Solvent: 500. g	$\frac{\text{H}_2\Theta}{1000} \times \frac{1 \text{ kg H}_2O}{\text{g H}_2\Theta} =$	= 0.500 kg H ₂ O	$m = \frac{\text{moles}}{\text{kg so}}$	$\frac{1.50 \text{ mol NaCl}}{1 \text{ kg H}_2\text{O}} = \frac{1.50 \text{ mol NaCl}}{1 \text{ kg H}_2\text{O}}$

 $1.50 \text{ mol NaCl} \times 0.500 \text{ kg H}_2 \Theta \times 58.44 \text{ g NaCl} = 43.8 \text{ g NaCl}$ 1 mol NaCl 1 kg H₂O OVERVIEW OF OTHER CALCULATIONS... (Chem 1H) D) percent by mass = $\underline{\text{mass of solute}} \times 100$ mass of solution E) percent by volume = volume of solute x 100 volume of solution F) dilution $M_1V_1 = M_2V_2$ (M = molarity, V = volume) G) solubility of gases: <u>Henry's Law</u> – the pressure of a gas is directly proportional to the solubility at a given temperature ($P \alpha S$) $\underline{\mathbf{S}}_1 = \underline{\mathbf{S}}_2$ $P_1 P_2$ $X_{A} = \underline{n_{A}} \qquad X_{B} = \underline{n_{B}} \qquad (n_{A} + n_{b}) \qquad (n_{A} + n_{b})$ H) mole fraction (X)where n = number of moles IV. Solvation—the dissolving of a solute into a solvent A) hydration—a specific kind of solvation, when water is the solvent B) aqueous solutions of ionic cmpds. 1) water hydrating an anion: water's partially positive (δ +) end points inward, surrounding the anion

2) water hydrating an cation: water's partially negative (δ -) end points inward, surrounding the cation

- C) aqueous solutions of molecular cmpds.
 - 1) polar molecular cmpds dissolve in water
 - 2) nonpolar molecular cmpds don't dissolve in water

- V. Solution Formation (abbreviation for solution = *soln*.)
 - A) SOLUTE + SOLVENT = SOLUTION
 - B) "Like dissolves like"

	SOLVENT	SOLUTION?	
+	Polar/Ionic	Yes	
+	Nonpolar	No	
+	Polar/Ionic	No	
+	Nonpolar	Yes	
	+ + + +	+ Polar/Ionic + Nonpolar + Polar/Ionic + Nonpolar + Nonpolar	SOLVENTSOLUTION?+Polar/IonicYes+NonpolarNo+Polar/IonicNo+NonpolarYes

POLAR / IONIC EXAMPLES:				
All BI**	Salts**	Water		
All TI**	Sugars	Non-symmetrical molecules		
All OTHER ionic**	Acids (vinegar, etc.)	"Hydrophilic" substances		
All crisscrossed formulas**	Alcohols			

** generalizing! (we do not deal with exceptions)

<u>1</u>	NONPOLAR EXAMPLES:	
Oil	Wax/Paraffin	Symmetrical molecules
Diatomics ("Super 7")	Noble gases	Fats
Hydrocarbons: methane	, propane, butane, octane	"Hydrophobic" substances

- C) Factors which increase solvation (dissolving) rate:
 - 1) surface area—crush up solids (increase surface area [S.A.])
 - 2) agitation—stirring, swirling, shaking
 - 3) temperature—heating usually causes increased solvation
- D. common examples of different types of solutions
 - solute-solvent:
 - 1) gas-gas: atmospheric air
 - 2) gas-liquid: carbonated water
 - 3) liquid-liquid: alcohol in water
 - 4) solid-liquid: sugar in water
 - 5) solid-solid: metal alloys such as brass

VI. Solubility

- A) *the maximum amount of a solute* (substance being dissolved) *which will dissolve in a given amount of solvent* (substance doing the dissolving)
- B) <u>miscible</u>—the ability of liquids to mix (opposite = <u>immiscible</u>)
- C) solution descriptions
 - 1) <u>unsaturated</u>—small amount of solute; completely dissolved; room for more
 - 2) <u>saturated</u>—too much solute; not all dissolved; excess settles on the bottom
 - 3) **<u>supersaturated</u>**—an unstable solution formed from heating a saturated solution until all the solid dissolves; can recrystallize when cooled

- VII. Electrolytes and Nonelectrolytes
 - A) <u>electrolytes</u>—conductors in aqueous solution (usually ionic compounds and acids)
 - 1) <u>weak electrolyte</u>—a small fraction of the solute is as free ions
 - 2) <u>strong electrolyte</u>—almost all of the solute is as free ions
 - B) <u>nonelectrolytes</u>—*nonconductors in aqueous solution* (usually molecular and organic compounds)

VIII. Water of Hydration (review)

- A) <u>water of hydration</u>—water molecules chemically integrated into a crystalline *structure*
- B) hydrate—a compound with water in its structure
 - 1) general formula: $[compound]^{\cdot} H_2O$
 - 2) naming: [compound name] (prefix)hydrate
 - CuSO₄ · 5H₂O copper(II) sulfate pentahydrate
- C) anhydrous—a hydrate without its water of hydration

 $Na_2SO_4 \cdot 2H_2O \rightarrow Na_2SO_4 + 2H_2O$

sodium sulfate dihydrate anhydrous sodium sulfate + water

- D) <u>efflorescence</u>—the release of water by a hydrate (heating not needed)
- E) **<u>hygroscopic</u>**—remove water from the atmosphere
- F) <u>deliquescence</u>—absorbing excess water from the atmosphere to form a liquid substance
- G) desiccant
 - 1) a *drying agent* which is hygroscopic
 - 2) examples: Damp Rid; packets of silica powder in shoe boxes

IX. <u>Colligative Properties</u> of Solutions (details, Chem 1H)

- A) these properties relate to the number of solute particles
- B) examples
 - 1) **vapor pressure lowering** (volatile solute α v.p.)
 - 2) **boiling point elevation**
 - a) BPE α solute concentration
 - b) $\Delta T_b = K_b m$ BPE = (molal b.p. elevation constant) x (molality)

3) freezing point depression

- a) FPD α solute concentration
- b) $\Delta T_f = K_f m$ BPE = (molal f.p. depression constant) x (molality)
- C) osmosis
 - 1) <u>osmosis</u>—diffusion of a solvent through a semipermeable membrane, from dilute to concentrated
 - 2) <u>osmotic pressure</u>—amount of additional pressure from the water molecules that moved into the concentrated solution